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The background flow method.
Part 1. Constructive approach to bounds

on energy dissipation

By R O L F N I C O D E M U S, S. G R O S S M A N N
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Fachbereich Physik der Philipps-Universität, Renthof 6, D–35032 Marburg, Germany

(Received 11 August 1997 and in revised form 8 December 1997)

We present a numerical strategy that allows us to explore the full scope of the
Doering–Constantin variational principle for computing rigorous upper bounds on
energy dissipation in turbulent shear flow. The key is the reformulation of this
principle’s spectral constraint as a boundary value problem that can be solved
efficiently for all Reynolds numbers of practical interest. We state results obtained
for the plane Couette flow, and investigate in detail a simplified model problem that
can serve as a definite guide for the application of the variational principle to other
flows. The most notable findings are a bifurcation of the minimizing wavenumber
and a pronounced minimum of the bound at intermediate Reynolds numbers, and a
distinct asymptotic scaling of the optimized variational parameters.

1. Introduction
Mathematically rigorous results are scarce in the theory of turbulence. One of the

few rigorous approaches arises from the attempt to derive inequalities for determining
bounds on quantities that characterize turbulent flows. This approach had already
reached a certain state of maturity 25 years ago (see Howard 1972); perhaps the
most notable among the earlier contributions is the Optimum Theory developed by
Busse (1970, 1978, 1996). For instance, this theory still gives for asymptotically high
Reynolds numbers the best upper bound on the rate of energy dissipation in turbulent
Couette flow that has been calculated so far.

The recent formulation by Doering and Constantin of a variational principle for
bounding the energy dissipation rate in turbulent shear flow (Doering & Constantin
1994), channel flow (Constantin & Doering 1995), and convection (Doering & Con-
stantin 1996) has therefore met with considerable interest. What is the actual scope
of this new principle? Is it just a non-obvious reformulation of previous theories, or
can one obtain further deep insights from it? These questions have already found a
partial answer in the work of Kerswell (1997, 1998), who showed that the Doering–
Constantin principle, if improved by a further variational parameter introduced by
Nicodemus, Grossmann & Holthaus (1997 a), yields precisely the same bound on the
energy dissipation rate for the plane Couette flow, or the rate of heat transport in
Rayleigh–Bénard convection, as the Optimum Theory. But still, these formal consid-
erations do not yield the numerical values of the bounds. In order to fully explore
the possibilities opened up by the Doering–Constantin principle, this principle has to
be attacked head-on.
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This is what we will do in the present work. Namely, we develop a numerical scheme
that allows us to exploit the variational principle in the entire range from ‘low’ to ‘high’
Reynolds numbers, where the resulting bound shows a distinct asymptotic scaling
behaviour. In addition to constructing a good approximate solution to the variational
principle, we also analyse the mathematical structures underlying this solution.

In order to reach these goals we resort to a compromise. Although we will state
results pertaining to the full unrestricted plane Couette flow, we will illustrate our
techniques with the help of a simplified example, namely the Couette flow without
spanwise degrees of freedom. This model problem exhibits virtually all salient features
also encountered in the analysis of the unrestricted Couette problem, while allowing us
to keep the technicalities within reasonable limits. On the other hand, this restriction
makes possible a fairly detailed discussion of the crucial issues, which will then provide
the starting points for the analytical theory developed in the follow-up paper, Part 2
(Nicodemus, Grossman & Holthaus 1998).

The present first part of our work is concerned with the numerical aspects of the
variational principle. In § 2 we will state the principle for obtaining upper bounds
on energy dissipation in plane Couette flow, and relate this principle to the works
by Busse (1970, 1978, 1996) and Kerswell (1997, 1998). The main technical difficulty
in evaluating the principle is caused by its spectral constraint, which seems to have
prevented previous numerical work (Wick 1996; Doering & Hyman 1997) from
reaching the asymptotic regime. In § 3 we show how to bring this spectral constraint
into a form that can be dealt with efficiently even at asymptotically high Reynolds
numbers, while § 4 describes the optimization procedure for a specific class of test
functions. We then present our findings in § 5. The final § 6 offers a brief discussion,
together with an overview of several results obtained up to now.

The aim of the present numerically oriented first part is twofold. On the one hand,
we wish to provide a detailed example that can serve as a definite guideline when
applying the extended Doering–Constantin principle to different, more complicated
flows; on the other hand, we want to acquire some knowledge about how the
principle works, and to collect clues for the analytical approach. The most important
observation made here, namely a bifurcation of the minimizing wavenumber that
determines the optimal upper bound on the dissipation rate, will be depicted in
figure 7. In Part 2 of our work (Nicodemus et al. 1998) we will take up loose ends,
and develop an analytical asymptotic theory of optimal upper bounds.

2. Variational principle for plane Couette flow
We consider the standard plane Couette geometry: an incompressible fluid with

kinematic viscosity ν is confined between two infinitely extended rigid plates. The
lower plate is at rest and coincides with the plane z = 0 of a Cartesian coordinate
system, whereas the upper one at z = h moves with constant velocity U in the
positive x-direction. The dynamics of the fluid’s velocity field u(x, t) are governed by
the equations

∂tu+ u · ∇u+ ∇p = ν∇2u (Navier–Stokes equations), (2.1)

∇ · u = 0 (incompressibility), (2.2)

u(x, y, 0, t) = 0, u(x, y, h, t) = Ux̂ (no-slip boundary conditions); (2.3)

x̂ denotes the unit vector in x-direction. Periodic boundary conditions in the x- and
y-directions are imposed on u and on the kinematic pressure p; the periodicity lengths
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are Lx and Ly . Denoting the periodicity volume as Ω = LxLyh, the time-averaged
rate of energy (per mass) dissipated by the fluid is given by

εT ≡
1

T

∫ T

0

dt

{
ν

Ω

∫
Ω

d3x

[ ∑
i,j=x,y,z

(∂jui)
2

]}
. (2.4)

The objective of the background flow method is to calculate mathematically rigorous
bounds on the long-time limit ε of εT ,

ε ≡ lim
T→∞

εT , (2.5)

or on the non-dimensionalized dissipation rate

cε(Re) ≡ ε

U3h−1
, (2.6)

where Re = Uh/ν is the Reynolds number.
Energy stability theory, applied to the plane Couette flow, asserts (see Joseph

1976; Drazin & Reid 1981) that any initial deviation from the laminar solution
u(x, t) =

(
Uz/h

)
x̂ decays at least exponentially in time as long as the Reynolds

number remains less than the energy stability limit ReES ≈ 82.65. Thus,

cε(Re) = Re−1 for Re < ReES . (2.7)

In addition, the laminar flow yields a rigorous lower bound cε for all Re, namely

cε(Re) > cε(Re) ≡ Re−1 (Doering & Constantin 1994). Hence, the actual task is to
formulate a theory for calculating upper bounds on cε for Re > ReES .

This task was tackled by Busse in the framework of his Optimum Theory (Busse
1970, 1978, 1996), which is based on a decomposition of the velocity field into a
z-dependent plane-averaged flow and the accompanying fluctuations. This decom-
position leads in a straightforward manner to a nonlinear Euler–Lagrange problem,
for which Busse, using an asymptotic solution technique, found the so-called multi-α
solutions. In this way he was able to derive an asymptotic upper bound on cε,

lim
Re→∞

cε(Re) . 0.010. (2.8)

The right-hand side of (2.8) does not depend on the Reynolds number, so that the
Optimum Theory is in accordance with the classical scaling behaviour (Kolmogorov
1941; Obukhov 1941; von Weizsäcker 1948; Heisenberg 1948; Onsager 1945; for
a discussion of the connection between cε(Re) and intermittency corrections see
Grossmann 1995). As a consequence of the various approximations involved in
the multi-α solutions, the numerical value of the constant is afflicted with some
uncertainty†.

The approach recently pioneered by Doering & Constantin (1992, 1994) rests on a
quite different decomposition of the velocity field. Instead of considering some kind of
averaged mean flow, these authors revive an idea already put forward by Hopf (1941)
and introduce an auxiliary stationary and divergence-free flow field U (x) that has to
carry the boundary conditions of the physical flow: U (x, y, 0) = 0, U (x, y, h) = Ux̂,
and U is assumed to be periodic in the x- and y-directions. Otherwise this auxiliary
field, dubbed the background flow , can be chosen arbitrarily. The decomposition of

† According to F. H. Busse (private communication, 1996), this uncertainty may be of the order
of 20%.



284 R. Nicodemus, S. Grossmann and M. Holthaus

the flow field then reads

u(x, t) = U (x) + v(x, t) , (2.9)

where the divergence-free deviation v(x, t) from the background flow satisfies homo-
geneous boundary conditions for all instants t > 0, i.e. v(x, y, 0, t) = v(x, y, h, t) = 0,
and v is periodic in the x- and y-directions.

In the following we restrict ourselves to background flows that can be written in
the form

U (x) ≡ Uφ(ζ) x̂; φ(0) = 0, φ(1) = 1, (2.10)

with a merely height-dependent profile function φ; the argument ζ ≡ z/h is the
dimensionless coordinate in the cross-stream direction. We thus exclude background
flows that have a spanwise structure. In addition, we require φ(ζ) = 1− φ(1− ζ), so
that our background flow profiles reflect the symmetry of the geometry. Defining the
profile functional

D{φ} ≡
∫ 1

0

dζ
[
φ′(ζ)

]2 − 1 (2.11)

and introducing the dimensionless balance parameter a, the variational principle for
calculating the best upper bounds on cε(Re) that the background flow method with
the trial flows (2.10) has to offer stems from the inequality (see Nicodemus et al.
1997 a for a detailed derivation)

cε(Re) 6 inf
φ,a>1

{[
1 +

a2

4 (a− 1)
D{φ}

]
Re−1

}
, (2.12)

which is subject to a spectral constraint: φ and a have to be chosen such that all
eigenvalues λ of the linear eigenvalue problem

λV = −2h2∇2V + Rφ′

 0 0 1
0 0 0
1 0 0

V + ∇P ,

0 = ∇ · V , V satisfies the homogeneous boundary conditions

 (2.13)

for the stationary velocity fields V are positive. The balance parameter a enters into
this eigenvalue problem via the rescaled Reynolds number

R ≡ a

a− 1
Re. (2.14)

It is the presence of this balance parameter that distinguishes the variational principle
(2.12) from the original principle first formulated by Doering & Constantin (1994).
The balance parameter is necessary to ensure that the background flow method
reproduces the known 1/Re-behaviour of cε(Re) up to the energy stability limit ReES ,
see Nicodemus et al. (1997 a).

The above principle generalizes energy stability theory: following Doering & Con-
stantin (1994) one can utilize the Navier–Stokes equations to relate εT to a functional
of the deviations from the background flow, and then derive bounds on the long-time
averaged dissipation rate by seeking this functional’s extrema in an enlarged space of
all stationary divergence-free fields satisfying the homogeneous boundary conditions.
In this way one parallels directly the line of reasoning adopted in energy stability
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theory (Joseph 1976; Drazin & Reid 1981). It is this enlargement of the space of
admitted functions which effectuates that, even after optimization of the background
flow U , the background flow method can in general not yield the exact values of cε(Re),
but provides rigorous upper bounds cε(Re). Deviations of experimentally measured
energy dissipation rates from these upper bounds thus characterize to what extent
the actual solutions to the Navier–Stokes equations explore the enlarged function
space.

Even though this background flow approach and Busse’s Optimum Theory appear
to be profoundly different at a first glance – somewhat arbitrary fields U here,
genuine mean flows there – there exists an intriguing connection between them. By
implementing the spectral constraint with the help of a Lagrange multiplier technique,
one can transform the technical problem of optimizing the background flow into a
nonlinear Euler–Lagrange problem quite similar to that appearing in Busse’s work
(Doering & Constantin 1994). Adopting this strategy, and applying Busse’s multi-α
technique to this new problem, Kerswell (1997) showed that the best bound obtainable
with the background flow method coincides in the limit Re → ∞ with the bound
provided by the Optimum Theory. In his subsequent work, Kerswell (1998) was able
to prove the equality of both bounds for all Re, without having to invoke multi-α
solutions.

In spite of this formal identity of the bounds, there remain significant differences
between the minimizing background flow and the mean flow occurring in Busse’s
theory. If the profile function φ is chosen optimally, the plane-averaged fluctuations
around the background flow vanish (see Kerswell 1997) as do, by construction, the
fluctuations around Busse’s plane-averaged flow, but nevertheless in the limit Re→∞
this latter flow has a slope of 1

4
U/h in the interior (Busse 1970, 1978, 1996), whereas

the slope of the optimal profile φ vanishes.
From the computational viewpoint, a considerable advantage of the background

flow method stems from its great flexibility. It can easily be adapted to other flow ge-
ometries (Wang 1997), or flows with non-stationary boundary conditions (Marchioro
1994), and for the purpose of constructing upper bounds on cε it is not necessary to
know the optimal profile (or the optimal three-dimensional background flow) before-
hand. Any profile φ of the required form, in combination with an arbitrary a > 1,
gives rise to a maximal Reynolds number Rec up to which the spectral constraint is
fulfilled; by means of (2.12) one then obtains from that particular pair (φ, a) an exact
upper bound on cε for all Re < Rec.

The further treatment of the variational principle can be simplified considerably
by observing that the optimization of the balance parameter a separates from the
optimization of the profile function itself. Let us assume for the moment that we
already have a method to evaluate the spectral constraint, i.e. to determine for an
arbitrary φ that rescaled Reynolds number Rc{φ} where the lowest eigenvalue of (2.13)
passes through zero. Then according to (2.12) this φ yields an upper bound on cε,

cε 6

[
1 +

a2
opt

4
(
aopt − 1

)D{φ}]Re−1 for 0 6 Re < Rc{φ}. (2.15)

Taking into account the spectral constraint and (2.14), the optimization of a gives

aopt =


2 for 0 6 Re < 1

2
Rc{φ}

Rc{φ}
Rc{φ} − Re

for 1
2
Rc{φ} 6 Re < Rc{φ}.

(2.16)
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Figure 1. Graph of an upper bound on cε produced by the profile φ sketched in the inset.

Hence we obtain

cε 6


[1 + D{φ}]Re−1 for 0 6 Re < 1

2
Rc{φ}[

1 +
D{φ}Rc{φ}2

4(Rc{φ} − Re)Re

]
Re−1 for 1

2
Rc{φ} 6 Re < Rc{φ}.

(2.17)

Figure 1 shows a typical graph of an upper bound (2.17) produced by a generic
profile φ. Considered as a function of the Reynolds number, such an upper bound is
continuous and even continuously differentiable at Re = 1

2
Rc{φ}; it has exactly one

minimum in the whole interval 0 6 Re < Rc{φ}. This minimum appears in the upper
half of this interval, i.e. for 1

2
Rc{φ} 6 Re < Rc{φ}.

The variation over a set of profile functions φ amounts to considering all their
graphs in the (Re, cε)-plane; the optimal upper bound on cε(Re) is then given by
the lower envelope of these graphs. Provided the Re-dependence of this envelope is
merely weak as compared with a graph originating from a particular profile φ, the
only point that this φ can possibly contribute to the optimal bound cε(Re) – if any
point at all – is its minimum point. The proviso obviously holds close to possible
extrema of the bound, and in the limit Re→∞, where the bound becomes flat. Thus,
we obtain a mapping from a profile φ to a point in the (Re, cε)-plane,

φ 7→
(
Remin{φ}, cε

(
Remin{φ}

))
; (2.18)

here cε
(
Remin{φ}

)
denotes the right-hand side of (2.17) (for the profile φ considered)

at Re = Remin{φ}. Minimizing the bound (2.17) with respect to Re, one sees that the
Reynolds number Remin{φ} of the minimum point can be expressed as

Remin{φ} = X0{φ}Rc{φ}, (2.19)
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where X0{φ} is the unique (real) zero of the cubic polynomial

x3 − 2x2 +
(
1− 3

4
D{φ}

)
x+ 1

2
D{φ} = 0 (2.20)

that can be found between 1
2

and 1, i.e. 1
2
6 X0{φ} < 1.

The practical computation of upper bounds on the dissipation rate now hinges on
the solution of two problems: one has to provide a method for calculating Rc{φ} for
each given profile φ, i.e. for finding the rescaled Reynolds number (2.14) where the
smallest eigenvalue of the eigenvalue problem (2.13) passes through zero, and one
has to develop a procedure for minimizing cε(Re), i.e. for optimizing the profile by
varying its parameters. These two issues will be taken up separately in the following
two sections.

3. Implementation of the spectral constraint
In order to non-dimensionalize the problem, we now choose the gap width h as the

unit of length. We denote the dimensionless quantities by the same symbols as their
dimension-carrying counterparts. Thus, the eigenvectors V of (2.13) are henceforth
regarded as dimensionless functions of the dimensionless variables x, y and z; the
height variable z becomes equal to the variable ζ employed in (2.10).

Utilizing the periodic boundary conditions, the ansatz

V (x) = v(z) ei(kxx+kyy), P (x) = p(z) ei(kxx+kyy) (3.1)

transforms the eigenvalue equation (2.13) into the system

λvx = −2
(
∂2
z −

(
k2
x + k2

y

))
vx + Rφ′vz + ikxp, (3.2)

λvy = −2
(
∂2
z −

(
k2
x + k2

y

))
vy + ikyp, (3.3)

λvz = −2
(
∂2
z −

(
k2
x + k2

y

))
vz + Rφ′vx + p′, (3.4)

0 = ikxvx + ikyvy + v′z (3.5)

with the boundary conditions

v(0) = v(1) = 0. (3.6)

We consider only the non-trivial case
(
kx, ky

)T ≡ k 6= 0 in the following.
It turns out that all methodical and conceptual aspects that characterize the solution

procedure for the three-dimensional Couette flow appear even when the spanwise
degrees of freedom are suppressed. However, in this simplified two-dimensional case
the technical effort is reduced dramatically. To give but one example, the fourth-order
eigenvalue problem that will appear in the analysis of the simplified flow becomes a
sixth-order problem in the general case, so that the system of six coupled differential
equations (3.13)–(3.18) then has to be replaced by a system of 20 equations. In order to
elucidate the salient features of our approach without hiding essential points behind
technicalities, we confine ourselves from now on to the case

vy(z) = 0, ky = 0, (3.7)

and leave the detailed discussion of the unrestricted, three-dimensional Couette flow
to a separate publication (see Nicodemus, Grossmann & Holthaus 1997 b).
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Now the condition (3.5) allows us to express vx(z) in terms of v′z(z),

vx(z) = i
v′z(z)

kx
, (3.8)

and to obtain an expression for p(z) from (3.2),

p =
1

k2
x

(
2v′′′z −

(
2k2

x − λ
)
v′z
)

+ i
R

kx
φ′vz. (3.9)

Inserting these expressions into (3.4) we arrive at a fourth-order equation for vz(z),

v(4)
z − 1

2

(
4k2

x − λ
)
v′′z + 1

2
k2
x

(
2k2

x − λ
)
vz + ikxRφ

′v′z + 1
2
ikxRφ

′′vz = 0, (3.10)

with the boundary conditions

vz(0) = v′z(0) = 0 and vz(1) = v′z(1) = 0. (3.11)

For piecewise linear profiles φ, (3.10) becomes a system of equations with constant
coefficients that can easily be solved (Orwoll 1994). However, for general curved
profiles the equations (3.10) and (3.11) constitute an intricate eigenvalue problem, the
solution of which cannot be obtained analytically. A numerical integration of (3.10)
necessitates posing suitable initial conditions at a single boundary, say z = 0. Defining
the four-vectors

Vz(z) ≡
(
vz(z) , v

′
z(z) , v

′′
z (z) , v

′′′
z (z)

)T
,

we consider the two fundamental solutions Vz,1 and Vz,2 to (3.10) that emerge from

the initial conditions Vz,1(0) = (0, 0, 1, 0)T and Vz,2(0) = (0, 0, 0, 1)T , respectively. The
most general solution to (3.10) which satisfies the boundary condition (3.11) at z = 0
is then given by a superposition of these two fundamental solutions. The additional
boundary condition at z = 1 yields the further constraint

Det

(
vz,1(1) vz,2(1)

v′z,1(1) v′z,2(1)

)
= vz,1(1) v′z,2(1)− vz,2(1) v′z,1(1) = 0. (3.12)

Hence, when directly solving the boundary value problem (3.10), (3.11) by stepwise
integration starting from z = 0, one has to adjust the parameters λ, kx, and R (for given
φ) such that (3.12) is fulfilled. However, (3.12) presents a severe numerical problem,
since it involves the subtraction of two numbers of almost identical magnitude. An
elegant way to overcome this difficulty is known as the compound matrix method in
the literature (see e.g. Straughan 1992): instead of integrating a system of equations
for vz and its derivatives, one first reformulates the system in terms of determinants
of the kind (3.12).

To this end, we define a new six-vector y(z). The components of this vector are the
2× 2 minors of the 4× 2 matrix that contains Vz,1 as its first and Vz,2 as its second
column, i.e. of the solution matrix to the system considered above:

y1 = vz,1v
′
z,2 − v′z,1vz,2, y2 = vz,1v

′′
z,2 − v′′z,1vz,2, y3 = vz,1v

′′′
z,2 − v′′′z,1vz,2,

y4 = v′z,1v
′′
z,2 − v′′z,1v′z,2, y5 = v′z,1v

′′′
z,2 − v′′′z,1v′z,2, y6 = v′′z,1v

′′′
z,2 − v′′′z,1v′′z,2.
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The fourth-order equation (3.10) then leads to a system of six coupled equations,

y′1 = y2, (3.13)

y′2 = y3 + y4, (3.14)

y′3 = y5 + 1
2

(
4k2

x − λ
)
y2 − ikxRφ

′y1, (3.15)

y′4 = y5, (3.16)

y′5 = y6 + 1
2

(
4k2

x − λ
)
y4 + 1

2
k2
x

(
2k2

x − λ
)
y1 + i 1

2
kxRφ

′′y1, (3.17)

y′6 = 1
2
k2
x

(
2k2

x − λ
)
y2 + ikxRφ

′y4 + i 1
2
kxRφ

′′y2. (3.18)

The initial condition (3.11) at z = 0 yields

y(0) = (0, 0, 0, 0, 0, 1)T , (3.19)

and (3.12) gives an additional boundary condition at z = 1,

y1(1) = 0. (3.20)

This kind of asymmetric boundary condition (3.19), (3.20) turns out to be very
convenient for numerical analysis. An additional simplification can be obtained by
reducing the complex system (3.13)–(3.18) to a real one: starting from the decom-
position y(z) = f(z) + ikxg(z) with real vector functions f(z) and g(z), then taking
g1(z) = 0 successively produces

g1 = 0, g2 = 0, g4 = −g3, g5 = 1
2
Rφ′f1,

g6 = 1
2

(
4k2

x − λ
)
g3 + 1

2
Rφ′f2, f3 = 1

2

(
4k2

x − λ
)
f1 + f4,

}
(3.21)

where we have used φ′(z) 6= 0. These equations are consistent with the initial condition
(3.19), so that we arrive at a closed system of merely six real differential equations:

f′1 = f2, (3.22)

f′2 = 1
2

(
4k2

x − λ
)
f1 + 2f4, (3.23)

g′3 = − 1
2
Rφ′f1, (3.24)

f′4 = f5, (3.25)

f′5 = 1
2
k2
x

(
2k2

x − λ
)
f1 + 1

2

(
4k2

x − λ
)
f4 + f6, (3.26)

f′6 = 1
2
k2
x

(
2k2

x − λ
)
f2 + k2

xRφ
′g3. (3.27)

The corresponding initial conditions are

f6(0) = 1, all other components vanish at z = 0; (3.28)

the condition at z = 1 reads

f1(1) = 0. (3.29)

For a given profile φ and a given set of parameters λ, kx, and R, the unique
solution to the initial value problem (3.22)–(3.28) together with the expressions (3.21)
constitute the unique solution to the initial value problem (3.13)–(3.19). Thus, solving
the eigenvalue problem (3.10), (3.11) becomes equivalent to solving the boundary value
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problem (3.22)–(3.29). It seems that the system (3.22)–(3.27) captures the underlying
symmetries in an optimal way, which is also reflected by the fact that it contains only
the square of the wavenumber kx. Hence, we can consider the absolute value k ≡ |kx|
instead of kx in the following.

For λ 6 2k2 and monotonic profiles with φ′(z) > 0, we can understand intuitively
how the initial value problem ‘works’: starting with f6 (see (3.28)), the components
f5, f4, f2 and f1 are driven successively. According to (3.24), g3 is then driven with
an opposite sign – the strength of the drive being regulated by the product Rφ′ –
and acts back on f6. If this feedback is so strong that f6 itself becomes negative, the
whole dynamics are repeated with opposite sign.

Obviously, the boundary condition (3.29) is fulfilled – an eigenvalue of (2.13) has
been found – when a zero of f1(z) occurs at z = 1. As is clear from the above
discussion, all eigenvalues of (2.13) will be positive for R = 0. Remember that our
aim is to determine for any given profile φ that R-value Rc{φ} where the lowest
eigenvalue passes through zero. We do so by keeping λ = 0 fixed when solving
the system (3.22)–(3.27) numerically for a representative set of wavenumbers k, and
monitor for each such k the dependence of f1(1) on R. In this way we identify the
lowest value R0{φ}(k) of the rescaled Reynolds number where the condition (3.29) is
satisfied, i.e. the lowest zero of f1(1) as a function of R. The continuous dependence
of the (discrete) eigenvalues of (2.13) on both the profile φ and the parameters R and
k guarantees that this zero indeed corresponds, for the considered φ and k, to the
passage of the lowest eigenvalue through zero.

The value R0{φ}(k) is a functional of the profile φ and a function of the wavenum-
ber k. Since the periodicity length Lx (and hence the wavenumber kx) is a dummy
variable in the actual problem, one has to determine the desired value Rc{φ} in a
further step by minimizing over all k:

Rc{φ} ≡ min
k>0
{R0{φ}(k)} . (3.30)

Thus, for each profile φ the evaluation of the spectral constraint requires both the
solution of a set of linear eigenvalue problems labelled by the wavenumber k, and
a subsequent minimization. Figure 2 illustrates the k-dependence of R0{φ}(k), for a
generic φ. It should be noted that both steps, the identification of the first zero of the
R-dependent function f1(1) for each k, and the minimization over k, can efficiently be
implemented with the help of standard numerical routines.

4. Minimization of the upper bound
Having supplied a method for computing Rc{φ} for arbitrary profiles φ, and thus

for finding their profile points (2.18), we can now turn to the actual minimization of
the upper bound on cε(Re).

We first have to specify the class of test profiles within which the variation is going
to take place. To this end, we characterize these profiles φ by as few as possible
and physically reasonable parameters. An educated guess for a useful class of test
profiles can be made by recalling previous results: following Doering & Constantin
(1992, 1994), one can verify the admissibility of a profile to the variational principle
(2.12) by means of functional estimates. In this way the actual spectral constraint
(2.13) is oversatisfied, so that one no longer obtains the best possible bounds, but
with such an over-restrictive profile constraint the variational principle can be solved
analytically (see Nicodemus et al. 1997 a). For Re > 20

√
2 the resulting profiles consist
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Figure 2. Behaviour of R0{φ}(k) as a function of k for a generic profile φ, and the ensuing
minimum Rc{φ} at the wavenumber kc.

of parabolic boundary segments of thickness δ < 1
2

and a connecting line with zero

slope in the interior, φ(z) = 1
2

for δ < z < 1 − δ. However, remembering that the
slope of Busse’s (1970, 1978, 1996) mean flows does not vanish, whereas Kerswell
(1997) obtained zero-slope profiles for Re→ ∞ when applying multi-α techniques to
his Euler–Lagrange problem, it is clear that the slope p of the profiles in the interior
should be one of the variational parameters.

Hence, a simple but promising class of test profiles consists of functions φ(z) with
parabolic boundary segments of thickness δ (0 < δ < 1

2
) that merge into a straight

line with slope p (0 < p 6 1). We require that φ(z) be continuous and continuously
differentiable at the merging points z = δ and z = 1− δ. Our variational profiles are
thus fully characterized by the two parameters δ and p,

φ(z) =


(δp+ (1− p)) z/δ − 1

2
(1− p)

(
z/δ
)2

for 0 6 z 6 δ
1
2
(1− p) + pz for δ < z < 1− δ

1− (δp+ (1− p)) (1− z)/δ + 1
2
(1− p)

(
(1− z)/δ

)2
for 1− δ 6 z 6 1.

(4.1)
The profile functional (2.11) now becomes a function of δ and p,

D{φ} =

(
2

3δ
− 1

)
(1− p)2 ≡ D(δ, p) . (4.2)

After Rc{φ} ≡ Rc(δ, p) has been computed numerically and the zero X0{φ} ≡ X0(δ, p)
of the cubic polynomial (2.20) has been determined, each parameter pair (δ, p) can be
mapped according to (2.18) to its profile point in the (Re, cε)-plane. With the help of
a specifically adapted algorithm (for details, see Nicodemus 1997) we then construct
the lower envelope of these points, i.e. the optimal upper bound on cε(Re), for all
Reynolds numbers of practical interest.

When performing this optimization in practice, one encounters some characteristic
phenomena that accompany the increase of the Reynolds number. These phenomena
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are not merely technical or numerical issues, but reflect the structure of the entire
process that determines the optimal bound.

Above all, it has to be realized that the spectral constraint (2.13) acts as a sort of
filter for the admissible profiles when Re, and hence R, becomes large. Regardless
of the particular parametrization, the constraint singles out only those profiles that
possess a large slope in the vicinity of the boundaries, but are comparatively flat
in the interior. Intimately connected to this shape of the admissible profiles is the
behaviour of R0{φ}(k), considered as a function of the wavenumber k. Namely, the
minimum structure of these functions changes at Reynolds numbers around 860: the
single minimum occurring at lower Re splits into two separate minima. This fact
forces us to keep track of two substantially different k-regimes when seeking the
minima of R0{φ}(k) for large Re, and to ensure that the numerically selected value
Rc{φ} (cf. figure 2) actually corresponds to the global minimum. It will turn out that,
as a consequence of the variational principle, both minima adopt the same value Rc,
and that this balance is crucial for the scaling properties of the variational parameters
and of cε(Re) itself.

The inevitable emergence of large k-values poses two problems for the numerical
procedure. The first of these problems shows up in the behaviour of the zeros of
f1(1) considered as a function of R. For a fixed boundary-layer-type profile φ and
large wavenumbers, the lowest two zeros approach each other and finally coalesce
in the limit k → ∞. More generally, the zeros tend to get paired with increasing k.
To give an example for the required numerical accuracy, we state the first four zeros
for the parameters δ = 0.2, p = 0.1, and kx/2π = 10: the first and second zeros
occur at R0,1 = 5163.186 160 812 7(1) and R0,2 = 5163.186 160 812 8(1), the third and
fourth at R0,3 = 9249.806 408 520 3(1) and R0,4 = 9249.806 408 520 4(1); here and in
the following the numbers in brackets give the uncertainty of the last digit. We are
thus faced with the problem of distinguishing two closely spaced zeros, which can
be overcome by first locating the minimum between those zeros and then using this
minimum as starting value in a root-finding routine.

The second numerical problem stemming from large wavenumbers concerns the
system of differential equations (3.22)–(3.27), with λ set to zero: it needs to be rescaled
in order to reach the regime of large k. We define the new variables

q1(z) ≡ k4f1(z) e−2kz, q2(z) ≡ 1
2
k3f2(z) e−2kz, q3(z) ≡ 2k3g3(z) e−2kz,

q4(z) ≡ k2f4(z) e−2kz, q5(z) ≡ 1
2
kf5(z) e−2kz, q6(z) ≡ f6(z) e−2kz.

The powers of k in this transformation are determined by the requirement that all
components of the rescaled system be of the same order of magnitude even for large
k; the common damping factor exp(−2kz) compensates an exponential growth of the
components of the previous system (3.22)–(3.27). We will discuss in Part 2 why the
value of the damping constant must be precisely 2k.

Thus, the system of equations suitable for high-Re analysis reads

q′1 = 2k [−q1 + q2] , (4.3)

q′2 = 2k[ 1
2
q1 − q2 + 1

2
q4], (4.4)

q′3 = −2kq3 −
R

k
φ′q1, (4.5)
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Figure 3. Bounds on cε. Points denote the optimal upper bound cε(Re) that can be obtained from
the test profiles (4.1); the solid line at the left is the lower bound cε(Re) = Re−1. The inset shows the
upper bound on a doubly logarithmic scale for Reynolds numbers between ReES and ReB , see (5.5);
the dashed line has the ‘asymptotic’ slope predicted by (5.7).

q′4 = 2k [−q4 + q5] , (4.6)

q′5 = 2k[ 1
4
q1 + 1

2
q4 − q5 + 1

4
q6], (4.7)

q′6 = 2k [q2 − q6] +
R

2k
φ′q3; (4.8)

its initial condition q(0) = (0, 0, 0, 0, 0, 1)T is supplemented by the boundary condition
q1(1) = 0. With the help of this system we have computed cε(Re) for Reynolds
numbers up to 107, without encountering any kind of stability problem.

5. Results
Figure 3 shows the optimal upper bound on cε(Re) that results from optimizing the

test profiles (4.1), together with the lower bound cε(Re) = Re−1. The energy stability
limit for the Couette flow with suppressed spanwise degrees of freedom is determined
as

ReES = 177.214 186 80(1). (5.1)

Below this Reynolds number the upper and lower bounds on cε coincide, see (2.7), so
that

cε(ReES ) = Re−1
ES = 0.564 288 908 27(4)× 10−2. (5.2)

At ReES the upper bound resulting from the variational principle is continuous,
but obviously not continuously differentiable; cε(Re) increases with Re for Reynolds
numbers slightly above ReES . This is no artifact tied to our particular class of test
profiles, but a generic feature. Even much more sophisticated parametrizations of the
profiles yield the same qualitative picture in the vicinity of ReES .
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Figure 4. Balance parameter a for the optimal upper bound on cε as a function of the Reynolds
number. For Re < ReES this parameter is known analytically, see (2.16), and drawn as a solid line.
For Re > ReES the data points correspond to the bound depicted in figure 3. The vertical arrow
marks the bifurcation number ReB , see (5.5).

This interesting fact is related to the balance parameter a: the upper bound
provided by the variational principle (2.12) with over-restrictive profile constraint, as
calculated analytically by Nicodemus et al. (1997 a), shows a similar discontinuity of
the derivative, albeit already at Re = 16

√
2, whereas there is no such discontinuity

in the corresponding result obtained by Gebhardt et al. (1995) from the original
Doering–Constantin principle, which implicitly fixes the balance parameter at the
value a = 2. The Re-dependence of the optimal balance parameter that corresponds
to the bound cε(Re) displayed in the previous figure is depicted in figure 4. Starting
with the Doering–Constantin value a = 2 at Re = 1

2
ReES , it tends to infinity at

Re = ReES . There is a kind of transition in the sense that the deviations v from the
background flow U change their role abruptly at Re = ReES . Namely, for Reynolds
numbers below ReES these deviations are fluctuations around a physically realizable
flow, i.e. around a stationary solution to the equations of motion, but this is no longer
the case for Re > ReES . The balance parameter then descends to the asymptotic
value a = 3 which is known from analytical considerations (Nicodemus et al. 1997 a).
It shows a kink at a Reynolds number ReB , the significance of which will become
obvious later.

A further characteristic feature of the optimal upper bound on cε shown in figure 3
is a distinct minimum. In the asymptotic limit Re → ∞ the bound approaches the
constant

lim
Re→∞

cε(Re) = 0.561 84(1)× 10−2. (5.3)

In order to obtain more insight into the structure of the problem, we now consider
the optimal profile parameters δ (the thickness of the boundary layers) and p (the
profile slope in the interior) as functions of Re for Re > ReES . Figures 5 and 6 reveal
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Figure 5. Optimal parameter δ, which denotes the thickness of the profiles’ boundary layers, as
function of the Reynolds number. The arrow marks the bifurcation number ReB .
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Figure 6. Optimal parameter p, which denotes the slope of the profiles in the interior, as function
of the Reynolds number. The arrow again marks the bifurcation number ReB .

that both parameters obey simple scaling laws in the asymptotic regime,

δ ∼ αRe−1, p ∼ βRe−1; (5.4)

with constants α and β. The accuracy of our method is emphasized by the fact that
the numerically obtained optimal parameters do not show any noticeable scatter.

The most remarkable observation is that the Re-dependence of both parameters
exhibits a pronounced change at

ReB ≈ 860, (5.5)

as indicated by the arrows in figures 5 and 6. The width δ of the boundary layer
alters its Re-dependence from an approximate Re−3/4-law to the Re−1-scaling. The
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Figure 7. Plot of the wavenumber(s) k that minimize R0{φ}(k), as function(s) of Re. The apparent
discontinuity at the bifurcation point results from the finite Re-resolution.

change of the slope p is even more dramatic; p has a kink at ReB . Likewise, the
optimized balance parameter a has a kink, as shown in figure 4. These abrupt
changes are caused by a phenomenon that has already been mentioned in § 4, namely
the splitting of the single minimum of the functions R0{φ}(k) into a double minimum.
The variational problem possesses the property that for Re > ReB the optimal
parameter p (for given δ) is uniquely determined by the condition that both minimal
values of R0{φ}(k) be equal. Expressed in mathematical terms: two eigenvalues of
(2.13) characterized by two different wavenumbers pass through zero simultaneously.
The resulting bifurcation of those wavenumbers that characterize the passage of the
lowest eigenvalues of (2.13) through zero is featured in figure 7. For high Re the upper
k-branch k2 apparent in this figure scales proportionally to Re, whereas the lower
branch k1 approaches a constant value in the limit Re → ∞. This asymptotic value
coincides, within numerical accuracy, with the wavenumber kES that characterizes the
zero eigenvalue at the energy stability limit:

lim
Re→∞

k1

2π
=
kES

2π
= 0.602 677 6(1). (5.6)

This striking observation provides a key for an analytical asymptotic theory that will
be elaborated in Part 2.

The splitting of a single minimum into a double minimum is a clear signa-
ture of the nonlinearity that is inherent in the optimization process as a whole.
Even though the main technical problem of the background flow method con-
sists in determining the value R0{φ}(k) for each individual φ and k from a lin-
ear eigenvalue problem, it has to be kept in mind that both the minimization
over the wavenumbers and the optimization of the profiles are essentially non-
linear operations. The bifurcation in k-space brought about by these nonlineari-
ties entails strong consequences for the optimal upper bound on cε. If we take
the scaling behaviour of δ for Reynolds numbers below the bifurcation (δ ∝
Re−3/4) and set both the slope p and the balance parameter a to their asymp-
totic values (p = 0 and a = 3), we can simulate the asymptotic behaviour that
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would prevail if there were no bifurcation. Then (2.15) and (4.2) immediately
yield

cε ∼ const.× Re−1/4. (5.7)

For comparison, the inset in figure 3 presents a doubly logarithmic plot of the up-
per bound in the interval ReES 6 Re 6 ReB; it also depicts a straight line with
the ‘asymptotic’ slope that is predicted by (5.7). The bifurcation takes place before
this Re−1/4-behaviour is fully developed, then leading to both the minimum of the
upper bound and its actual asymptotic Re0-scaling. But interestingly enough, the
Re−1/4-dependence of cε(Re) is exactly what one finds in Busse’s theory for the case
of a single boundary layer approximation (i.e. for a single-α solution; see Busse 1970,
1978 and Kerswell 1997), whereas the Re0-scaling is equal to the scaling behaviour
of Busse’s asymptotic solution (2.8).

6. Discussion and outlook
After the pioneering works by Doering & Constantin (1992, 1994) and the fol-

lowing developments by Nicodemus et al. (1997 a) and Kerswell (1997) had already
established the background flow method as a theoretical tool for computing rigorous
upper bounds on quantities that characterize turbulent flows, the techniques devel-
oped in this paper constitute a constructive approach towards the actual solution of
this method’s variational principle. This approach is quite different from, and com-
plementary to, the work of Kerswell (1997, 1998): there the variational problem was
transformed into a nonlinear Euler–Lagrange type problem. If this problem could
be solved exactly, it would give the best bounds that the background flow method
can provide. However, an exact solution is exceedingly difficult; up to now only an
approximate multi-α solution for asymptotically high Reynolds numbers is available.
In contrast, we have divided the problem of calculating upper bounds into pieces that
can be dealt with more easily, and deduce rigorous bounds for any value of Re. The
price we have to pay is that the quality of our bounds depends on the choice of the
test profiles.

The primary objective of this paper has been the solution procedure itself, rather
than its application to a specific flow. The example problem studied here, a plane
Couette flow with suppressed spanwise degrees of freedom, is of considerable interest
since it illustrates in condensed form all essential steps that also occur in the analysis
of physical problems, such as unrestricted shear flows or Rayleigh–Bénard heat
convection.

In particular, the variational computation of upper bounds on the energy dissi-
pation rate for the unrestricted, three-dimensional Couette flow directly parallels the
simplified case. All characteristic features, from the occurrence of a bifurcation in
k-space to the shape of the graph of the optimal upper bound, are met again, even
though the corresponding equations are much more involved. We report in figure 8
our findings for this problem, see Nicodemus et al. (1997 b). This upper bound has
been computed with the help of profiles that are parametrized in a more sophisticated
manner than the profiles (4.1) considered up to now; the mathematical motivation
for this improved parametrization will be given in Part 2. The upper bound for the
unrestricted Couette flow separates from the lower one at

ReES = 82.650 148 87(1); (6.1)
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Figure 8. Bounds on cε for the unrestricted, three-dimensional Couette flow. Points denote the
numerically computed variational upper bound cε(Re); the solid line on the left is the lower bound
cε(Re) = Re−1.

correspondingly, the value of cε at the energy stability limit is given by

cε(ReES ) = Re−1
ES = 0.012 099 191 758(2). (6.2)

In the asymptotic limit the bound approaches the constant value

lim
Re→∞

cε(Re) = 0.010 87(1), (6.3)

which is only minutely above (but within the uncertainty interval of) Busse’s result
(2.8). Hence, when backed by our techniques the background flow method competes
in the asymptotic regime with the best other method known so far, and it is unrivalled
in the important regime of intermediate Reynolds numbers.

The most significant step made in the present work is the identification of the
mechanism that dictates the cross-over from intermediate to high Reynolds numbers
and determines the asymptotic scaling behaviour of the optimal upper bounds, namely
the bifurcation in k-space displayed in figure 7. In Part 2 we will develop an analytical
asymptotic theory for our example problem. This will not only result in a detailed
understanding of the bifurcation itself and of the scaling behaviour (5.4) of the
optimized profile parameters, but also reveal which kind of further parameter is
necessary in order to improve the numerically obtained asymptotic value of cε.

Finally, we summarize in figure 9 the present status of research on the rigorous
theory of upper bounds on the dimensionless dissipation rate cε for the turbulent
plane Couette flow, including relevant experimental data for the energy dissipation
rate. We recognize that replacing the over-restrictive profile constraint employed in
earlier works (Doering & Constantin 1992, 1994; Gebhardt et al. 1995; Nicodemus
et al. 1997 a) by the actual spectral constraint (2.13) gives an improvement by about
a factor of 8. But the gap that remains between the rigorous upper bounds and
the experimentally measured dissipation rates still spans an order of magnitude.
Moreover, the question whether the true dissipation rates exhibit a scaling correction
in the limit Re → ∞, perhaps a logarithmic correction as discussed by Doering &
Constantin (1994), still remains to be answered.
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Figure 9. Comparison of bounds on cε(Re). Solid slanted straight line: lower bound cε(Re) = Re−1.
Topmost horizontal solid line: upper bound obtained by Doering & Constantin (1992, 1994) with
the help of an over-restrictive profile constraint and piecewise linear profiles; cε(Re) ≈ 0.088 for
Re > 11.32. Dashed-dotted line: improved bound on cε(Re) derived by Gebhardt et al. (1995)
from the analytical solution of the Doering–Constantin principle with the over-restrictive con-
straint; cε(Re) ≈ 0.079 for Re > 16.98. Long-dashed line: further improvement due to the in-
troduction of the balance parameter, see Nicodemus et al. (1997 a); cε(Re) → 0.066. This bound
is still calculated analytically utilizing the over-restrictive profile constraint. Heavy dots: upper
bound for the unrestricted, three-dimensional plane Couette flow obtained by Nicodemus et al.
(1997 b) from the variational principle (2.12) with the actual spectral constraint (2.13), cf. figure 8;
cε(Re)→ 0.010 87(1). Following dashed line: asymptotic upper bound (2.8) derived by Busse (1970,
1978); cε(Re)→ 0.010(1). The shaded area denotes the estimated uncertainty of this bound. Solid line
below: upper bound computed in this work for the restricted, two-dimensional Couette flow, cf. fig-
ure 3; cε(Re)→ 0.561 84(1)× 10−2. Dotted line: improvement obtained in Part 2 by optimizing the
shape of the profiles’ boundary segments, see (5.1) and (4.7) in Part 2; cε(Re)→ 0.498 013 3(1)×10−2.
Triangles: experimental dissipation rates for the plane Couette flow measured by Reichardt (1959).
Circles: experimental dissipation rates for the Taylor–Couette system with small gap as measured
by Lathrop, Fineberg & Swinney (1992).
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